Abstract
Purpose The mouse eye is a widely used model for retinal disease and has potential to become a model for myopia. Studies of retinal disease will benefit from imaging the fundus in vivo. Experimental models of myopia often rely on manipulation of the visual experience. In both cases, knowledge of the optical quality of the eye, and in particular, the retinal image quality degradation imposed by the ocular aberrations is essential. In this study, we measured the ocular aberrations in the wild type mouse. Methods Twelve eyes from six four-week old black C57BL/6 wild type mice were studied. Measurements were done on awake animals, one being also measured under anesthesia for comparative purposes. Ocular aberrations were measured using a custom-built Hartmann–Shack system (using 680-nm illumination). Wave aberrations are reported up to fourth order Zernike polynomials. Spherical equivalent and astigmatism were obtained from the 2nd order Zernike terms. Modulation Transfer Functions (MTF) were estimated for the best focus, and through-focus, to estimate depth-of-focus. All reported data were for 1.5-mm pupils. Results Hartmann–Shack refractions were consistently hyperopic (10.12 ± 1.41 D, mean and standard deviation) and astigmatism was present in many of the eyes (3.64 ± 3.70 D, on average). Spherical aberration was positive in all eyes (0.15 ± 0.07 μm) and coma terms RMS were significantly high compared to other Zernike terms (0.10 ± 0.03 μm). MTFs estimated from wave aberrations show a modulation of 0.4 at 2 c/deg, for best focus (and 0.15 without cancelling the measured defocus). For that spatial frequency, depth-of-focus estimated from through-focus modulation data using the Rayleigh criterion was 6 D. Aberrations in the eye of one anesthetized mouse were higher than in the same eye of the awake animal. Conclusions Hyperopic refractions in the mouse eye are consistent with previous retinoscopic data. The optics of the mouse eye is far from being diffraction-limited at 1.5-mm pupil, with significant amounts of spherical aberration and coma. However, estimates of MTFs from wave aberrations are higher than previously reported using a double-pass technique, resulting in smaller depth-of-field predictions. Despite the large degradation imposed by the aberrations these are lower than the amount of aberrations typically corrected by available correction techniques (i.e., adaptive optics). On the other hand, aberrations do not seem to be the limiting factor in the mouse spatial resolution. While the mouse optics are much more degraded than in other experimental models of myopia, its tolerance to large amounts of defocus does not seem to be determined entirely by the ocular aberrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.