Abstract
The image deconvolution technique can recover potential sharp images from blurred images affected by aberrations. Obtaining the point spread function (PSF) of the imaging system accurately is a prerequisite for robust deconvolution. In this paper, a computational imaging method based on wavefront coding is proposed to reconstruct the wavefront aberration of a photographic system. Firstly, a group of images affected by local aberration is obtained by applying wavefront coding on the optical system’s spectral plane. Then, the PSF is recovered accurately by pupil function synthesis, and finally, the aberration-affected images are recovered by image deconvolution. After aberration correction, the image’s coefficient of variation and mean relative deviation are improved by 60% and 30%, respectively, and the image can reach the limit of resolution of the sensor, as proved by the resolution test board. Meanwhile, the method’s robust anti-noise capability is confirmed through simulation experiments. Through the conversion of the complexity of optical design to a post-processing algorithm, this method offers an economical and efficient strategy for obtaining high-resolution and high-quality images using a simple large-field lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.