Abstract

Under the framework of computational integral imaging, an optical 3D objects security and high-quality reconstruction method based on pixel-evaluating mapping (PEM) algorithm is proposed. In this method, the pixel crosstalk caused by noneffective pixel overlap is effectively reduced by a pixel-evaluated mask, which can improve the image quality of the reconstructed 3D objects. Meanwhile, compared with the other computational integral imaging reconstruction methods, our proposed PEM algorithm can obtain more accurate pixel mapping weight parameters, thereby the reconstructed 3D objects provide higher quality. In addition, the nonlinear feedback shift register cellular automata algorithm is proposed to increase the security of the proposed method. We have experimentally verified the proposed 3D objects encryption and reconstruction algorithm. The experimental results show that the proposed method is superior to the other computational reconstruction methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call