Abstract

Optic flow describes the apparent motion that is present in an image sequence. We show the feasibility of obtaining optic flow from dynamic properties of a sparse set of multi-scale anchor points. Singular points of a Gaussian scale space image are identified as feasible anchor point candidates and analytical expressions describing their dynamic properties are presented. Advantages of approaching the optic flow estimation problem using these anchor points are that (i) in these points the notorious aperture problem does not manifest itself, (ii) it combines the strengths of variational and multi-scale methods, (iii) optic flow definition becomes independent of image resolution, (iv) computations of the components of the optic flow field are decoupled and that (v) the feature set inducing the optic flow field is very sparse (typically \(<{{1}\over{2}}\%\) of the number of pixels in a frame). A dense optic flow vector field is obtained through projection into a Sobolev space defined by and consistent with the dynamic constraints in the anchor points. As opposed to classical optic flow estimation schemes the proposed method accounts for an explicit scale component of the vector field, which encodes some dynamic differential flow property.KeywordsSingular PointImage SequenceOptic FlowAnchor PointScale SpaceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.