Abstract

Two strategies can guide walking to a stationary goal: (1) the optic-flow strategy, in which one aligns the direction of locomotion or "heading" specified by optic flow with the visual goal; and (2) the egocentric-direction strategy, in which one aligns the locomotor axis with the perceived egocentric direction of the goal and in which error results in optical target drift. Optic flow appears to dominate steering control in richly structured visual environments, whereas the egocentric- direction strategy prevails in visually sparse environments. Here we determine whether optic flow also drives visuo-locomotor adaptation in visually structured environments. Participants adapted to walking with the virtual-heading direction displaced 10 degrees to the right of the actual walking direction and were then tested with a normally aligned heading. Two environments, one visually structured and one visually sparse, were crossed in adaptation and test phases. Adaptation of the walking path was more rapid and complete in the structured environment; the negative aftereffect on path deviation was twice that in the sparse environment, indicating that optic flow contributes over and above target drift alone. Optic flow thus plays a central role in both online control of walking and adaptation of the visuo-locomotor mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.