Abstract
Glaucoma is one of blind causing diseases. The cup-to-disc ratio is the main basis for glaucoma screening. Therefore, it is of great significance to precisely segment the optic cup and disc. In this article, an optic cup and disc segmentation model based on the linear attention and dual attention is proposed. Firstly, the region of interest is located and cropped according to the characteristics of the optic disc. Secondly, linear attention residual network-34 (ResNet-34) is introduced as a feature extraction network. Finally, channel and spatial dual attention weights are generated by the linear attention output features, which are used to calibrate feature map in the decoder to obtain the optic cup and disc segmentation image. Experimental results show that the intersection over union of the optic disc and cup in Retinal Image Dataset for Optic Nerve Head Segmentation (DRISHTI-GS) dataset are 0.962 3 and 0.856 4, respectively, and the intersection over union of the optic disc and cup in retinal image database for optic nerve evaluation (RIM-ONE-V3) are 0.956 3 and 0.784 4, respectively. The proposed model is better than the comparison algorithm and has certain medical value in the early screening of glaucoma. In addition, this article uses knowledge distillation technology to generate two smaller models, which is beneficial to apply the models to embedded device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.