Abstract

Registration is a critical task in the field of point clouds, aiming to align data acquired at different times or from different viewpoints for accurate matching. Deep learning methods have made important progress in point cloud registration tasks. However, most existing approaches do not handle the non-overlapping parts of point clouds, resulting in poor performance in low-overlap and noisy scenarios. We propose a registration model called OPSNet, which achieves optimal alignment transformation estimation and overlapping region prediction through an iterative process. OPSNet consists of modules including global feature extraction, overlapping region prediction segmentation, and alignment registration. By utilizing a segmentation algorithm to deal with the non-overlapping parts of data, OPSNet reduces the adverse effects caused by non-overlapping regions in point cloud registration. The model learns feature representations and performs iterative optimization to achieve precise point cloud alignment. We conduct comprehensive experiments on common point cloud registration datasets and compare OPSNet with several classical point cloud registration methods. The experimental results display that OPSNet achieves outstanding performance in terms of rotation and translation errors, outperforming other methods. Additionally, we evaluate the registration performance under different overlap ratios and find that OPSNet can achieve better registration results even in low-overlap scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.