Abstract

The Drosophila Bolwig organs are small photoreceptor bundles that facilitate the phototactic behavior of the larva. Comparative literature suggests that these highly reduced visual organs share evolutionary ancestry with the adult compound eye. A recent molecular genetic study produced the first detailed account of the mechanisms controlling differential opsin expression and photoreceptor subtype determination in these enigmatic eyes of the Drosophila larva. Here, the evolutionary implications are examined, taking into account the dynamic diversification of opsin genes and the spatial regulation of opsin homolog expression in other insects. It is concluded that, consistent with their common evolutionary roots, the Drosophila larval and adult eyes use the same mechanisms for the regulation of opsin expression and photoreceptor cell fate specification. Strikingly, the structurally highly derived Bolwig organs retained a more ancestral state of opsin expression and regulation. Inconspicuous in size, the Drosophila larval eyes deliver useful lessons in the reconstruction of homology between neuronal cell types with gene expression data, and on the conservative nature of gene regulatory network evolution during the emergence of novel organs from ancestral templates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call