Abstract
AbstractWe define and study a Lefschetz operator on the equivariant cohomology complex of the Drinfeld and Lubin–Tate towers. For ℓ-adic coefficients we show how this operator induces a geometric realization of the Langlands correspondence composed with the Zelevinski involution for elliptic representations. Combined with our previous study of the monodromy operator, this suggests a possible extension of Arthur’s philosophy for unitary representations occurring in the intersection cohomology of Shimura varieties to the possibly non-unitary representations occurring in the cohomology of Rapoport–Zink spaces. However, our motivation for studying the Lefschetz operator comes from the hope that its geometric nature will enable us to realize the mod-ℓ Langlands correspondence due to Vignéras. We discuss this problem and propose a conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.