Abstract

Putting theory into practice in nanotechnology can be far from trivial. Magnetic artificial atoms have been an example of the gulf that can sometimes separate idea from experiment. The step from regular semiconductor artificial atoms to magnetic may not confound the imagination, but it poses no mean fabrication challenge to experimental physicists. In this issue researchers in Germany have successfully fabricated a magnetic artificial atom [1]. As the researchers point out, the systems look promising for further study of the transport properties of 0D magnetic objects.Magnetic behavior in nanoscale systems has inspired a number of technological developments, such as energetically efficient digital logiccircuitry [2]. Theory dictates that less energy is dissipated in the manipulation of nanomagnet logic bits than in the manipulation of electrical charges in transistor switches. Among the challenges when putting this into practice is the issue of sequential clocking. The nanomagnets' polarizations need to be rotated through 90° from the easy to the hard axis ready to be set before propagating the logic bits from one stage to the next. Ideally this would be a localized process to allow the efficiencies of a pipe-line computer architecture. Researchers at Virginia Commonwealth University in the US showed that a small voltage applied to a multiferroic nanomagnet can cause this polarization rotation [3]. They further showed that the switching delay of this process is not impracticably long, suggesting that the process is promising for logic circuits that are very fast as well as energy efficient [4].Researchers in Germany have demonstrated magnetic force microscopy for high resolution imaging using a carbon nanotube filled with iron [5]. A magnetic dipole moment in the iron extends from end to end of the iron nanowire in the carbon nanotube. As a result of the extreme aspect ratio of the nanowire only the pole at one end is involved in the imaging process. The authors describe the system in terms of a magnetic monopole—a notorious theoretical element yet to make the transition to experimental observations. Yet the description works well and as the authors claim, 'The magnetic resolution comes remarkably close to the maximum reported value and can still be improved by choosing iron-filled carbon nanotubes with optimized dimensions'.Artificial atoms, or superatoms, were used in the 1970s as theoretical constructs to investigate molecular structures [6]. Later studies of fullerenes [7, 8] and then other semiconductor artificial atom systems [9] rooted the concept firmly in experimental physics. The electronic behavior in these systems has inspired some fascinating technological developments [10]. Artificial atom quantum dots are small enough to be considered zero-dimensional, giving rise to quantum confinement effects: electrons added to quantum dots occupy discrete quantum levels, and spin-paired electrons can produce spin-zero electron states. The systems have demonstrated great promise for potential qubits for quantum computers. Silicon has a number of advantages for these applications including scalability and long spin coherence times. However, progress has been hindered in practice by difficulties in creating devices with sufficiently low disorder particularly at the Si/SiO2 interface. Researchers at the University of New South Wales in Australia have overcome these fabrication challenges and demonstrated a low-disorder silicon metal-oxide-semiconductor quantum dot where the number of electrons can be tuned between 0 and 27 [11].In this issue R–G Dengel, A Frey, K Brunner, C Gould and L W Molenkamp from Universität Würzburg in Germany create magnetic artificial atoms by replacing the traditionally used GaAs-based heterostructure with a ZnSe-based system where doping the quantum well with Mn gives it magnetic properties [1]. As they point out, 'From the fabrication point of view, three technical issues make this straightforward seeming idea very challenging to realize'. The interface between the III-V substrate and the ZnSe gives rise to strong polar fields. The lattice mismatch means that the heterostructure must be kept very thin raising further fabrication challenges, and finally there is also the issue of a lack of Schottky contact material for ZnSe. The authors demonstrate impressive ingenuity to develop a multi-step electron beam lithography process to produce the ZnSe dots. They also present preliminary transport data that confirm the magnetic nature of the resulting artificial atom.We are all familiar with the old adage: 'In theory there is no difference between theory and practice. But in practice there is.' While great progress in scientific research often builds on important synergies between theory and experiment, what the mind can conceive may take a great deal of cunning andskill in the laboratory to achieve. Yet as all these examples in nanotechnology fabrication research show, with each triumph in nanofabrication, progress is made to bridge the gap between theory and practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.