Abstract
AbstractRegional responses to surface warming are strongly influenced by the availability of surface or atmospheric moisture. For example, differences in evapotranspiration, atmospheric temperature lapse rate and heat capacity due to the availability of water over oceans and its lack over land contribute to an observed land/ocean warming ratio that is greater than one. This study shows that mechanisms related to the distributions of soil or atmospheric moisture could result in variations in regional climate change over land in the tropics and subtropics. Using atmospheric reanalyses and observations for the satellite era (1979–2016) within ±30° latitude, the analysis shows that dry regions such as northern and southern Africa and south‐central Australia have a significant negative regional spatial correlation between time‐averaged soil moisture/evapotranspiration and surface temperature trends. In contrast, wet tropical regions such as Amazonia and the Congo Basin display a significant positive spatial correlation between these quantities. Spatial correlations suggest that a regional amplification of surface temperature trends in wet regions could be associated with a robust positive longwave radiative effect of high clouds which co‐occur with wet soils. This positive relationship is strongest during austral summer, dominated by the summer seasons in the Amazon and Congo basins. These differences in regional sensitivity to greenhouse gas warming can be consequential for regional climate change assessment, for both tropical forests, which could already be operating at their high temperature limit, and also for dry desert regions, which are already marginal for supporting life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.