Abstract

At birth, associated with the rise in oxygen tension, the pulmonary arteries (PA) dilate and the ductus arteriosus (DA) constricts. Both PA and DA constrict with vasoconstrictors and dilate with vasodilators. They respond in a contrary manner only to changes in oxygen tension. We hypothesized that the effects of changes in oxygen are mediated by changes in redox status. Consequently, we tested whether a reducing agent, DTT, and an oxidizing agent, dithionitrobenzoic acid (DTNB), would have opposite effects on a major oxygen signaling pathway in the PA and DA smooth muscle cells (SMCs), the sequence of change in potassium current (IK), membrane potential (Em), cytosolic calcium, and vessel tone. Under normoxic conditions, DTT constricted adult and fetal resistance PA rings, whereas in DA rings DTT acted as a potent vasodilator. In normoxia, voltage-clamp measurements showed inhibition of IK by DTT in PASMCs and, in contrast, activation in DASMCs. Consequently, DTT depolarized fetal and adult PASMCs and hyperpolarized DASMCs. [Ca2+]i was increased by DTT in fetal and adult PASMCs and decreased in DASMCs. Under hypoxic conditions, DTNB constricted DA rings and caused vasodilatation in fetal PA rings. DTNB inhibited IK and depolarized the cell membrane in DASMCs. In contrast, activation of IK and hyperpolarization was seen in PASMCs. Thus the same redox signal can elicit opposite effects on IK, Em, cytosolic calcium, and vascular tone in resistance PA and the DA. These observations support the concept that redox changes could signal the opposite effects of oxygen in the PA and DA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.