Abstract

The metabolism of [3H]inositol- and [14C]arachidonate-labeled phospholipids of B lymphocytes from normal (C3H/HePAS) and endotoxin-hyporesponsive (C3H/HeJ) mice, after incubation with two B cell mitogens, lipopolysaccharide (LPS) and dextran sulfate (DxS) was examined. The early effects of the two mitogens on the biosynthesis of phosphoinositides were different. DxS enhanced the levels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in C3H/HeJ and C3H/HePAS cells, whereas LPS did not modify the levels of these components. When mixed with DxS, LPS reduced the effects of this stimulant. Analysis of the metabolism of fatty acids gave opposite results. Incorporation of arachidonate in all phospholipids, and particularly in phosphatidic acid, was inhibited in the two cell types after incubation with DxS, but was enhanced in C3H/HePAS and remained unchanged in C3H/HeJ cells after incubation with LPS. This activation of acyltransferases by LPS in B lymphocytes from endotoxin-responsive mice was inhibited when DxS was added in the stimulating mixture. The outcome of these opposite biochemical effects of LPS and DxS on the mitogenic responses of B cells was also examined. Preincubation with DxS for a 15-min period blocked the mitogenic effect of LPS in C3H/HePAS cells, whereas preincubation with LPS blocked the mitogenic effect of DxS in C3H/HeJ cells. Early changes in phospholipid metabolism induced by the two stimulants are therefore correlated with their late mitogenic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.