Abstract

Three kinds of hybrids, Ag2CO3/TiO2, Ag2C2O4/TiO2 and Ag3PO4/TiO2 comprising of P25-TiO2 and silver-containing photocatalyst, (together coded as AgxMyOz/TiO2 (M=C, P)) were prepared via a facile precipitation method. The photocatalytic activity and stability of the as-prepared AgxMyOz/TiO2 was compared by monitoring the oxidation of propylene under visible light irradiation. Results showed that both Ag2CO3/TiO2 and Ag2C2O4/TiO2 exhibit perfect performance with a high propylene degradation removal rate of 88% and 78%, respectively, during four successive experimental runs. On the contrary, for Ag3PO4/TiO2, the photocatalytic activity gradually declines to 8% from 32% under the same conditions. In order to explore the reason for the above remarkable difference in activity and stability over AgxMyOz/TiO2, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance spectroscopy (DRS) were used to investigate the change of AgxMyOz/TiO2 before and after irradiation. It was found that three silver-containings, Ag2CO3, Ag2C2O4 and Ag3PO4 on the surface of TiO2, all experienced photo-corrosion to various extents during irradiation process. Surprisingly, the effect of photo-corrosion on visible light activity and stability among various AgxMyOz/TiO2 is very different. For both Ag2CO3 and Ag2C2O4, they are easily decomposed into metallic Ag and CO2, and gaseous CO2 escaped from catalyst leaving silver nanoparticles on the surface of TiO2 resulted in the formation of plasmonic photocatalyst Ag/TiO2. The synergetic effect between surface plasma resonance of silver and interfacial electron transfer over the obtained Ag/TiO2 heterojunctions is in favor of the superior photocatalytic performance under visible light. While for Ag3PO4/TiO2, Ag3PO4 on the surface of TiO2 is partially photo-decomposed into Ag and phosphorus oxide and the phosphorus oxide covering on the surface of undecomposed Ag3PO4/TiO2 deactivates its photocatalytic performance. By comparison with the traditional Ag/TiO2 synthesized by photochemical reduction method, it was found that the photo-corrosion of Ag2CO3/TiO2 or Ag2C2O4/TiO2 can be used as a more effective method for preparing Ag/TiO2 composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call