Abstract
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher 125I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71–144% increase in 125I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%–73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%–66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.