Abstract

The transcription factor E2F1 is upregulated when cerebellar granular neurons (CGNs) undergo apoptosis under potassium deprivation. In this study, we examined the effects of E2F1 upregulation on the survival and death of CGNs isolated from C57 mice and Sprague-Dawley (SD) rats. Plasmid- and adenovirus-mediated expression of E2F1 dose-dependently induced apoptosis in mouse CGNs but unexpectedly failed to induce apoptosis in rat CGNs. Caspase 3, a marker for neuronal apoptosis, was significantly activated by ectopic E2F1 expression in mouse CGNs but not in rat CGNs. Furthermore, overexpression of E2F1 significantly promoted apoptotic progression in mouse CGNs following potassium deprivation but attenuated apoptosis in rat CGNs, whereas E2F1 lacking DNA binding ability (E2F1-M132) lost its pro-apoptotic role in mouse CGNs and anti-apoptotic role in rat CGNs. Together, our results demonstrated that upregulation of E2F1 by potassium deprivation promotes apoptosis in C57 mouse CGNs but antagonizes apoptosis in SD rat CGNs, suggesting opposing roles for E2F1 in regulating CGN fate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.