Abstract

Development of the frontonasal mass (FNM), branchial arches, heart, and limbs depends on neural crest-mediated epithelial-mesenchymal (E-M) interactions. Teratogenesis by retinoic acid (RA) or blockade of serotonergic (5-HT) signaling by the pan-5-HT(2) receptor antagonist, ritanserin, perturbs development of these embryonic structures. In both cases, resulting phenotypes include forebrain and olfactory placode anomalies, malformations of the face, eye and lens, as well as posterior neural tube and cardiac defects. Similar sites of malformations, together with the presence of RA response elements in the 5-HT(2B) receptor promoter, have led to the suggestion that a negative regulatory relationship may exist between RA and 5-HT(2)-mediated 5-HT signaling at sites of E-M interaction (Choi et al. 1997); however, another possibility is that RA and 5-HT act independently as opposing signals to regulate development of common embryonic targets. Together with recent evidence for opposite effects on chondrogenic differentiation in hindlimb micromass cultures (Bhasin et al. 2003a), results of the present study raise the possibility that these pathways may act as opposing signals for common targets in the mouse embryo. The RA receptors, co-factors and metabolic enzymes, and 5-HT(2B) receptors were found to be are coordinately expressed at sites of E-M interaction, including the FNM, in the embryonic day (E)10.5 mouse. Cell proliferation experiments using [(3)H]thymidine incorporation demonstrated that RA or activation of 5-HT(2B) receptors caused opposite effects in FNM explants, namely stimulation or inhibition of cell proliferation, respectively, 5-HT(2B) receptor activation did not appreciably alter patterning in FNM explants. While RA has been shown to regulate lateral patterning in the FNM (LaMantia et al. 2000), 5-HT(2B) receptor activation did not alter patterning in FNM explants. Quantification of 5-HT(2B) receptor transcripts by real-time PCR provided no evidence of negative regulation of 5-HT(2B) receptor expression by RA in FNM explants, although preliminary studies using in situ hybridization had suggested that this was a possibility in both explants and RA teratogenized embryos. Future studies using quantitative PCR may still show this to be the case in teratogenized embryos. Together with the finding of coordinate expression of 5-HT(2B )receptors and RA signaling molecules, results of the present study suggest that RA, and 5-HT mediated by 5-HT(2B )receptors, may act as opposing signals to regulate cell proliferation during craniofacial development in the mouse embryo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.