Abstract

VIP binding sites are upregulated in mesial temporal lobe epilepsy (MTLE) patients, also suffering from severe cognitive deficits. Although altered VIP and VIP receptor levels were described in rodent models of epilepsy, the VIP receptor subtype(s) were never identified. We now investigated how VPAC1 and VPAC2 receptor levels change in the Li2+-pilocarpine rat model of MTLE. Cognitive decline and altered synaptic plasticity as estimated from phosphorylation of AMPA GluA1 subunit on Ser831 and Ser845 and AMPA GluA1/GluA2 ratio was also probed. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks showed impaired learning in the radial arm maze (RAM) and presented decreased VPAC1 and increased VPAC2 receptor levels. In addition, SRSs rats showed increased AMPA GluA1 phosphorylation in Ser831 and Ser845, marked decrease in GluA1 levels and a milder decrease in GluA2 levels. Consequently, the GluA1/GluA2 ratio was also decreased in SRSs rats.Altered VIP receptor levels may differentially prevent or contribute to MTLE pathology, since VPAC1 receptors promote the endogenous control of LTP, mediate endogenous VIP neuroprotection against altered synaptic plasticity following epileptiform activity, and mediate anti-inflammatory actions in microglia, while VPAC2 receptors mediate VIP endogenous neuroprotection against neonatal excitotoxicity and prevent reactive astrogliosis. This discovery imposes a different mindset for considering VIP receptors as therapeutic targets in MTLE, allowing a differential targeting of the cellular events contributing to epileptogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call