Abstract

The 'cross-talk' between different types of neurotransmitters through second messenger pathways represents a major regulatory mechanism in neuronal function. We investigated the effects of activation of protein kinase C (PKC) on cAMP-dependent signaling by structurally related human D1-like dopaminergic receptors. Human embryonic kidney 293 (HEK293) cells expressing D1 or D5 receptors were pretreated with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, followed by analysis of dopamine-mediated receptor activation using whole cell cAMP assays. Unpredictably, PKC activation had completely opposite effects on D1 and D5 receptor signaling. PMA dramatically augmented agonist-evoked D1 receptor signaling, whereas constitutive and dopamine-mediated D5 receptor activation were rapidly blunted. RT-PCR and immunoblotting analyses showed that phorbol ester-regulated PKC isozymes (conventional: alpha, betaI, betaII, gamma; novel: delta, epsilon, eta, theta) and protein kinase D (PKCmicro) are expressed in HEK293 cells. PMA appears to mediate these contrasting effects through the activation of Ca2+-independent novel PKC isoforms as revealed by specific inhibitors, bisindolylmaleimide I, Gö6976, and Gö6983. The finding that cross-talk between PKC and cAMP pathways can produce such opposite outcomes following the activation of structurally similar D1-like receptor subtypes is novel and further strengthens the view that D1 and D5 receptors serve distinct functions in the mammalian nervous and endocrine systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call