Abstract

Increasing the concentration of counterions (salt) is known to reduce the bending persistence length of DNA. Here we use atomistic molecular dynamics simulations to predict that multivalent counterions have the opposite effect on double-stranded RNA, increasing its bending rigidity by at least 30%. This counterintuitive effect is observed for various tri- and tetravalent ions alike, and is robust to methodological details and the RNA sequence. In contrast to DNA, multivalent counterions bind inside the RNA major groove, causing significant contraction of the molecule along its helical axis-as a result, its further deformation due to bending becomes energetically more expensive compared to bending without bound multivalent ions. Thus, the relationship between mechanical properties of a charged polymer and its ionic atmosphere may be richer than previously thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.