Abstract
Ketamine, a pediatric anesthetic, is a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist. Studies show that ketamine is neurotoxic in developing mammals and zebrafish. In both mammals and zebrafish, acetyl l-carnitine (ALCAR) has been shown to be protective against ketamine toxicity. Ketamine is known to modulate the serotonergic system in mammals. Here, we measured the levels of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the embryos exposed to ketamine in the presence and absence of ALCAR. Ketamine, at lower doses, did not produce significant changes in the 5-HT or 5-HIAA levels in 3 dpf (day post-fertilization) embryos. However, 2mM ketamine (internal embryo exposure levels comparable to human anesthetic plasma concentration) significantly reduced 5-HT level, and 5-HIAA was not detectable indicating that 5-HT metabolism was abolished. In the presence or absence of 2mM ketamine, ALCAR by itself did not significantly alter 5-HT or 5-HIAA levels compared to the control. Ratios of metabolite/5-HT indicated that 2mM ketamine inhibited 5-HT metabolism to 5-HIAA whereas lower doses (0.1–0.3mM) of ketamine did not have any effect. ALCAR reversed the effects of 2mM ketamine not only by restoring 5-HT and 5-HIAA levels but also 5-HT turnover rate to control levels. Whole mount immunohistochemical studies showed that 2mM ketamine reduced the serotonergic area in the brain whereas ALCAR expanded it with increased axonal sprouting and branching. These results indicate that ketamine and ALCAR have opposing effects on the zebrafish serotonergic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.