Abstract

Glial cells surround neuronal endings to create enclosed compartments required for neuronal function. This architecture is seen at excitatory synapses and at sensory neuron receptive endings. Despite the prevalence and importance of these compartments, how they form is not known. We used the main sensory organ of C. elegans, the amphid, to investigate this issue. daf-6/Patched-related is a glia-expressed gene previously implicated in amphid sensory compartment morphogenesis. By comparing time series of electron-microscopy (EM) reconstructions of wild-type and daf-6 mutant embryos, we show that daf-6 acts to restrict compartment size. From a genetic screen, we found that mutations in the gene lit-1/Nemo-like kinase (NLK) suppress daf-6. EM and genetic studies demonstrate that lit-1 acts within glia, in counterbalance to daf-6, to promote sensory compartment expansion. Although LIT-1 has been shown to regulate Wnt signaling, our genetic studies demonstrate a novel, Wnt-independent role for LIT-1 in sensory compartment size control. The LIT-1 activator MOM-4/TAK1 is also important for compartment morphogenesis and both proteins line the glial sensory compartment. LIT-1 compartment localization is important for its function and requires neuronal signals. Furthermore, the conserved LIT-1 C-terminus is necessary and sufficient for this localization. Two-hybrid and co-immunoprecipitation studies demonstrate that the LIT-1 C-terminus binds both actin and the Wiskott-Aldrich syndrome protein (WASP), an actin regulator. We use fluorescence light microscopy and fluorescence EM methodology to show that actin is highly enriched around the amphid sensory compartment. Finally, our genetic studies demonstrate that WASP is important for compartment expansion and functions in the same pathway as LIT-1. The studies presented here uncover a novel, Wnt-independent role for the conserved Nemo-like kinase LIT-1 in controlling cell morphogenesis in conjunction with the actin cytoskeleton. Our results suggest that the opposing daf-6 and lit-1 glial pathways act together to control sensory compartment size.

Highlights

  • Sensory organs are the gates through which information flows into the nervous system

  • Sensory neuron receptive endings in the periphery, as well as excitatory synapses in the central nervous system, often lie within specialized compartments formed by glial processes

  • We demonstrate that the glia-expressed gene daf-6/Patched-related acts to restrict the size of the sensory compartment, while the Nemo-like kinase lit-1 acts within glia in the opposite direction, to promote sensory compartment expansion

Read more

Summary

Introduction

Sensory organs are the gates through which information flows into the nervous system. In many sensory organs, specialized glial cells form a chemically isolated compartment around neuronal receptive endings [1,2]. In the skin, the mechanosensory Pacinian corpuscles consist of an unmyelinated nerve ending that is surrounded by lamellae formed by a modified Schwann glial cell [3]. At least in some cases, the integrity of the glial compartment is essential for proper sensory neuron function [8]. Glial compartments enclose excitatory neuronal synapses in the cerebellum and hippocampus [9,10], and are thought to be important for synaptic function through limiting neurotransmitter diffusion, and regulating levels of synaptic effectors. Despite the prevalence of such glial compartments, little is known about their development

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call