Abstract

Subject of Research.A stereoscopic method of technical vision is proposed for recording the kinematic characteristics of the dynamic indentation process in determining the physico-mechanical properties of materials. The proposed method makes it possible to determine the values of the indenter motion speed with high accuracy. Method. The method is based on the use of two high-speed video cameras immovably fixed on one flat platform. Cameras allow for synchronous recording of the indentation process. The objectives and orientation of cameras in the stereo system provide intersection of the visual fields and the required depth of the image space field. Measurement of the movement speed is performed by triangulation method. The distance between the conjugate points of the recorded object on the stereo images is inversely proportional to the distance between the pair of cameras and the corresponding point of the object in the three-dimensional space. Based on the analysis of images obtained by spatially separated cameras, the coordinates of the object point are determined. Main Results. The experimental setup consisted of two high-speed monochrome camcorders Evercam 4000-32-M, rigidly fixed through stereo. Synchronous recording was kept at a speed of 4000 frames/s with a resolution of 1280 × 860 pixels. The indenter was made in the form of a steel ball with a mass of 230 g with a diameter of 38 mm and fell onto an aluminum disk 10 mm thick from a height of 310 mm. Video images from cameras were transferred to a personal computer for processing. The analysis of the obtained data was carried out in the MATLAB system with the help of a specially written software module. The sensitivity of the proposed method made it possible to determine confidently the values of the maximum approach speed of a steel ball equal to 2.39 m/s and a rebound velocity of 1.2 m/s. The random component of the method error did not exceed 2.5%. Practical Relevance. The development of this approach will enable to create high-precision sensors of dynamic indentation. The research results may be of interest to specialists involved in metrological support and non-destructive testing of materials and products in various fields of engineering and construction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.