Abstract

With the rapid depletion of phosphate rocks and increasing agricultural demand, establishing a phosphorus (P) flow "loop" rather than a one-way trajectory between cropland and urban areas was imperative. Recovering P from municipal wastewater stood as a viable strategy to mitigate reliance on traditional P-containing chemical fertilizer. This study analyzed the intricate relationships between the potentials of P recovery from municipal wastewater and the P demand of croplands in the populated Yangtze River Delta (YRD), China. An indicator of the P vehicle transport distance was constructed and calculated to estimate the potential to recover and reuse P in agriculture, applying the simulated annealing (SA) algorithm and road networks obtained from OpenStreetMap (OSM). The results indicated that, on a regional scale, recovered P from municipal wastewater could fulfill 14.0% of the cropland P demands in the YRD, with a median P vehicle transport distance of 3.1 km/Mg of P. Notably, the P vehicle transport distance varied largely depending upon the cropland distributions, road density, and P recovery potential from municipal wastewater. The novel methodology developed here determined the optimal transportation routes for P recovery from wastewater treatment plants (WWTPs) to cropland, which played a crucial role in refining the wastewater management strategies aligned with the United Nations Sustainable Development Goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.