Abstract
Microalgae are often considered as a promising alternative source of vegetable oils. These oils can be used for food and biofuel applications. Productivities that are projected for large-scale microalgal oil production are, however, often poorly supported by scientific evidence and based on too optimistic assumptions. To facilitate the inclusion of the microalgal physiology in these projections, existing knowledge and novel scientific insights were condensed into a mechanistic model that describes photosynthesis and carbon partitioning during nitrogen starvation. The model is validated using experimental data from both wild-type and a starchless mutant of Scenedesmus obliquus. The model is subsequently used to quantify how reactor design, process design, and strain improvement can improve the oil productivity from 2.1 to up to 10.9gm−2day−1. These projected productivities are used to reflect on commonly assumed oil productivities and it is concluded that the microalgal oil productivity is often overestimated several folds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.