Abstract

The identification of plants with high arsenic hyperaccumulating efficiency from water is required to ensure the successful application of phytoremediation technology. Five dominant submerged plant species (Vallisneria natans (Lour.) Hara., Potamageton crispus L., Myriophyllum spicatum L., Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle) in China were used to determine their potential to remove As from contaminated water. V. natans had the highest accumulation of As among them. The characteristics of As accumulation, transformation and the effect of phosphate on As accumulation in V. natans were then further studied. The growth of V. natans was not inhibited even when the As concentration reached 2.0 mg L−1. After 21 d of As treatment, the bioconcentration factor (BCF) reached 1300. The As concentration in the environment and exposure time are major factors controlling the As concentration in V. natans. After being absorbed, As(V) is efficiently reduced to As(III) in plants. The synthesis of non-enzymic antioxidants may play an important role under As stress and increase As detoxication. In addition, As(V) uptake by V. natans was negatively correlated with phosphate (P) uptake when P was sufficiently supplied. As(V) is probably taken up via P transporters in V. natans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.