Abstract

In this paper, we discuss the recent developments of our GPU-based Boussinesq-type wave simulation software, Celeris. This software is meant to serve the primary purpose of being interactive – i.e. allowing the user to modify the boundary conditions and model parameters as the model is running, and to see the effect of these changes immediately. To accomplish this, the model is coded in a shader language environment, and our physical variables (e.g. ocean surface elevation, water velocity) are represented in the model as graphical textures, which can therefore be rapidly rendered and visualized via a GPU. The model may run faster than real-time for problems with practical setups. Following a description of the numerical development of the wave model, we elaborate on the recent features that are added to the software such as irregular waves and uniform time series boundary conditions. Since the model is previously validated for breaking and non-breaking wave, in this paper, we compare the numerical results of the model with experimental results of a current benchmark and show its good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.