Abstract

Waste plastics catalytic cracking, a carbon-negative process from the life cycle perspective, is a forceful executable configuration for cyclic utilization in the ecology. However, industrializing this emerging process requires to prevail a series of challenges, including time-consuming and massive pilot tests, process strengthening, and parameter optimization. To accelerate industrialization, we developed a fraction-structure lumps reaction model that significantly improves efficiency and accuracy. Moreover, multi-objective optimization and multi-dimensional evaluation were further done by implementing this process model. Together, a subsequent assessment of society and the environment was carried out. Compared with the non-optimized process, the optimized waste plastic catalytic cracking process exhibits superior economic, social, and environmental performance. The final optimization results of the reaction temperature and catalyst/oil ratio are 564.27 and 25.95, respectively. Quantitative results of this study indicate that catalytic cracking of waste plastics can effectively reduce the emissions of 1.86 t CO2 eq/t feedstocks. For the 200,000-ton scale waste plastic catalytic cracking process constructed, it can effectively reduce 372,000 tons of carbon dioxide equivalent emissions annually. From the view of life cycle society-environment behavior, it can be intuitively seen that the primary energy consumption of the WPCC-Pro process optimized based on the same functional units (considering social and environmental factors) is better than that of the WPCC process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.