Abstract

The persistent reliance on coal has resulted in the accumulation of substantial coal gangue, a globally recognized problematic solid waste with environmental risks. Given the coal gangue properties and global land degradation severity, the resourceful utilization of coal gangue as soil conditioners is believed to be a universally applicable, cost-effective, high-demand and environment-friendly model with broad application prospect. The direct application of raw coal gangue faces challenges of low active beneficial ingredients, inadequate water and fertilizer retention, presence of potentially toxic elements, resulting in limited efficacy and environmental contamination. This paper provided a comprehensive review of various modification methods (including mechanical, chemical, microbiological, thermal, hydrothermal and composite modifications) employed to enhance the soil improvement performance and reduce the environmental pollution of coal gangue. Furthermore, an analysis was conducted on the potential application of modified coal gangue as a muti-function soil conditioner based on its altered properties. The modified coal gangue is anticipated to effectively enhance soil quality, exhibiting significant potential in mitigating carbon emissions and facilitating soil carbon sequestration. This paper provided innovative ideas for future research on the comprehensive treatment of coal gangue and restoration of degraded soil in order to achieve the dual goals of zero-coal gangue waste and sustainable agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.