Abstract

The two types ofncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are responsible for several biological processes within cells, such as the immune responses, cell growth and invasion, and regulation of the cell cycle. Rapidly expanding class of ncRNAs, lncRNAsinteract with other molecules to form chromatin-remodeling complexes. These potential hallmarks of diseases contribute to transcriptional and post-transcriptional regulation of several genes, possibly via cross-talk with other RNAs. Aberrant expression of lncRNAshas drawn increasing attention to the pathophysiology of different diseases, includingcancer and cardiovasculardiseases. Unfortunately, circulating lncRNAs are presented in the bloodstream at very low levels, making sensitive detection difficult. Currently, there are few methods for detecting these ncRNAs from which quantitative real-time-polymerase chain reaction (qRT-PCR) is the most routinely used technique. These techniqueslack sensitivity for intracellular detection of lncRNAs. Moreover, they are tedious and require a large sample size. Currently, nanotechnology has taken over the diagnostic field because of the tunable properties and modification opportunities. Furthermore, these conventional techniques can be merged with nanotechnology to improve detection sensitivity.This review highlights some of the most recent findings on nanotechnology-based methods and possible obstacles intheir application for moreaccurate sensing of lncRNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call