Abstract

For flow batteries (FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs (OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving low-cost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components (redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.