Abstract

In this paper, a novel opportunistic spectrum sharing scheme, based on orthogonal frequency division multiplexing with index modulation (OFDM-IM), is proposed for cognitive radio (CR) networks. In the considered OFDM-IM based CR (OFDM-IM-CR) model, the primary transmitter (PT) communicates with the primary receiver with the aid of an amplify-and-forward (AF) relay by transmitting OFDM-IM signals. Meanwhile, the secondary transmitter (ST) passively senses the spectrum and transmits its own information over those inactive subcarriers of the primary network to the secondary receiver if the signal-to-noise ratio of the PT <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\to $ </tex-math></inline-formula> ST link is above a predefined threshold; otherwise, the ST stays in silent mode. Two different types of maximum-likelihood (ML) detectors are designed for the primary network, based on the knowledge of either the estimated channel state information or the statistical channel information of the secondary network. A complexity-reducing method, which is applicable to both types and achieves near optimal performance, is further proposed. To evaluate the performance, a tight upper bound on the bit error rate (BER) is derived, assuming the first type of ML detection. Simulation results corroborate the analysis and show that OFDM-IM-CR has the potential of outperforming OFDM-CR and OFDM-IM-AF in terms of BER with higher spectral efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call