Abstract

The device-to-device (D2D) relaying is considered one of promising technologies to improve the spectral efficiency and extend the coverage of the cellular system with low additional costs. In the system with D2D relaying, some of user equipments (UEs) can act as relay stations (RSs) that forward other UEs’ data from/to the base station (BS). Compared with the RS, the D2D relaying has several advantages such as low deployment costs and high flexibility. We study an opportunistic subchannel scheduling problem in the OFDMA cellular network with D2D relaying in this paper. We formulate a stochastic optimization problem to maximize the sum-rate of the system with D2D relaying while satisfying the minimum average data rate requirement for each UE, and then develop an opportunistic scheduling algorithm by solving it. Due to a high computational complexity of the optimal scheduling algorithm, we also propose a heuristic algorithm with a lower computational complexity. In addition, since UEs that participate in D2D relaying sacrifice their resources to relay other UEs’ data, we also study incentive mechanisms to compensate their sacrifices. Through simulation results, we show the performance of our algorithms and the effects of our incentive mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.