Abstract

We consider the problem of routing packets across a multi-hop network consisting of multiple sources of traffic and wireless links while ensuring bounded expected delay. Each packet transmission can be overheard by a random subset of receiver nodes among which the next relay is selected opportunistically. The main challenge in the design of minimum-delay routing policies is balancing the trade-off between routing the packets along the shortest paths to the destination and distributing the traffic according to the maximum backpressure. Combining important aspects of shortest path and backpressure routing, this paper provides a systematic development of a distributed opportunistic routing policy with congestion diversity (D-ORCD). D-ORCD uses a measure of draining time to opportunistically identify and route packets along the paths with an expected low overall congestion. D-ORCD with single destination is proved to ensure a bounded expected delay for all networks and under any admissible traffic, so long as the rate of computations is sufficiently fast relative to traffic statistics. Furthermore, this paper proposes a practical implementation of D-ORCD which empirically optimizes critical algorithm parameters and their effects on delay as well as protocol overhead. Realistic QualNet simulations for 802.11-based networks demonstrate a significant improvement in the average delay over comparable solutions in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.