Abstract

It has been shown recently that dirty paper coding (DPC) achieves optimum sum-rate capacity in a multi-antenna broadcast channel with full channel state (CSI) information at the transmitter. With only partial feedback, random beamforming (RBF) is able to match the sumrate of DPC for large number of users. However, in the presence of spatial correlation, RBF incurs an SNR hit as compared to DPC. In this letter, we explore precoding techniques to reduce the effect of correlation on RBF. We thus derive the optimum precoding matrix that minimizes the rate gap between DPC and RBF. Given the numerical complexity involved in calculating the optimum precoder, we derive approximate precoding matrices that are simple to calculate and close in performance to the optimum precoder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.