Abstract

The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.

Highlights

  • Drinking water distribution systems (DWDS) contain complex microbial communities based on both measured by composition [1,2] and genetic network [3]

  • Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination

  • There appears to be an association between potential opportunistic pathogens and microbial community structures

Read more

Summary

Introduction

Drinking water distribution systems (DWDS) contain complex microbial communities based on both measured by composition [1,2] and genetic network [3]. While drinking water treatment and disinfection considerably reduces risk of exposure, opportunistic pathogens (OP) are often detected in different parts of DWDS. Pathogens 2017, 6, 54 microbiology of drinking water in premise plumbing and biofilms on pipes, drinking water storage tank sediment has been shown to harbor OPs [4,5]. Many of these OP, such as Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and some of Acanthamoeba spp. can pose significant risks to immunocompromised people [6,7,8,9,10].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call