Abstract

This correspondence studies the secrecy communication of the single-input single-output multi-eavesdropper (SISOME) channel with multiple single-antenna jammers, where the jammers and eavesdroppers are distributed according to the independent two-dimensional homogeneous Poisson point process (PPP). For enhancing the physical layer security, we propose an opportunistic multiple jammer selection scheme, where the jammers whose channel gains to the legitimate receiver less than a threshold, are selected to transmit independent and identically distributed (\emph{i.i.d.}) Gaussian jamming signals to confound the eavesdroppers. We characterize the secrecy throughput achieved by our proposed jammer selection scheme, and show that the secrecy throughput is a quasi-concave function of the selection threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.