Abstract
We address the issue of compressing and indexing data. We devise a data structure whose space occupancy is a function of the entropy of the underlying data set. We call the data structure opportunistic since its space occupancy is decreased when the input is compressible and this space reduction is achieved at no significant slowdown in the query performance. More precisely, its space occupancy is optimal in an information-content sense because text T[1,u] is stored using O(H/sub k/(T))+o(1) bits per input symbol in the worst case, where H/sub k/(T) is the kth order empirical entropy of T (the bound holds for any fixed k). Given an arbitrary string P[1,p], the opportunistic data structure allows to search for the occurrences of P in T in O(p+occlog/sup /spl epsiv//u) time (for any fixed /spl epsiv/>0). If data are uncompressible we achieve the best space bound currently known (Grossi and Vitter, 2000); on compressible data our solution improves the succinct suffix array of (Grossi and Vitter, 2000) and the classical suffix tree and suffix array data structures either in space or in query time or both. We also study our opportunistic data structure in a dynamic setting and devise a variant achieving effective search and update time bounds. Finally, we show how to plug our opportunistic data structure into the Glimpse tool (Manber and Wu, 1994). The result is an indexing tool which achieves sublinear space and sublinear query time complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.