Abstract

In this letter, a dual-hop wireless communication network with opportunistic amplify and forward (O-AF) relay is investigated over independent and non-identically distributed Nakagami-m fading channels. Employing Maclaurin series expansion around zero to derive the approximate probability density function of the normalized instantaneous signal-to-noise ratio (SNR), the asymptotic symbol error rate (SER) and outage probability expressions are presented. Simulation results indicate that the derived expressions well match the results of Monte-Carlo simulations at medium and high SNR regions. By comparing the O-AF with all AF relaying analyzed previously, it can be concluded that the former has significantly better performance than the latter in many cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call