Abstract
In the present contribution, we propose a novel opportunistic ambient backscatter communication (ABC) framework for radio frequency (RF)-powered cognitive radio (CR) networks. This framework considers opportunistic spectrum sensing (SS) integrated with ABC and harvest-then-transmit (HTT) operation strategies. Novel analytic expressions are derived for the average throughput, the average energy consumption and the energy efficiency (EE) in the considered set up. These expressions are represented in closed-form and have a tractable algebraic representation which renders them convenient to handle both analytically and numerically. In addition, we formulate an optimization problem to maximize the EE of the CR system operating in mixed ABC—and HTT—modes, for a given set of constraints, including primary interference and imperfect SS constraints. Capitalizing on this, we determine the optimal set of parameters which in turn comprise the optimal detection threshold, the optimal degree of trade-off between the CR system operating in the ABC—and HTT—modes and the optimal data transmission time. Extensive results from respective computer simulations are also presented for corroborating the corresponding analytic results and to demonstrate the performance gain of the proposed model in terms of EE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Cognitive Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.