Abstract

The OPLS all-atom force field was updated and applied to modeling unsaturated hydrocarbons, alcohols, and ethers. Testing has included gas-phase conformational energetics, properties of pure liquids, and free energies of hydration. Monte Carlo statistical mechanics (MC) calculations were used to model 60 liquids. In addition, a robust, automated procedure was devised to compute the free energies of hydration with high precision via free-energy perturbation (FEP) calculations using double annihilation. Testing has included larger molecules than in the past, and parameters are reported for the first time for some less common groups including alkynes, allenes, dienes, and acetals. The average errors in comparison with experimental data for the computed properties of the pure liquids were improved with the modified force field (OPLS/2020). For liquid densities and heats of vaporization, the average unsigned errors are 0.01 g/cm3 and 0.2 kcal/mol. The average error and signed error for free energies of hydration are both 1.2 kcal/mol. As noted before, this reflects a systematic overestimate of the hydrophobicity of organic molecules when the parametrization is done to minimize the errors for properties of pure liquids. Implications for the modeling of biomolecular systems with standard force fields are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.