Abstract

Novel pain killers without adverse effects are urgently needed. Opioids induce central and intestinal side effects such as respiratory depression, sedation, addiction, and constipation. We have recently shown that a newly designed agonist with a reduced acid dissociation constant (pKa) abolished pain by selectively activating peripheral μ-opioid receptors (MOR) in inflamed (acidic) tissues without eliciting side effects. Here, we extended this concept in that pKa reduction to 7.22 was achieved by placing a fluorine atom at the ethylidene bridge in the parental molecule fentanyl. The new compound (FF3) showed pH-sensitive MOR affinity, [35S]-GTPγS binding, and G protein dissociation by fluorescence resonance energy transfer. It produced injury-restricted analgesia in rat models of inflammatory, postoperative, abdominal, and neuropathic pain. At high dosages, FF3 induced sedation, motor disturbance, reward, constipation, and respiratory depression. These results support our hypothesis that a ligand’s pKa should be close to the pH of injured tissue to obtain analgesia without side effects.

Highlights

  • Opioid receptor agonists are the most powerful drugs to treat severe acute and cancer-related pain

  • Our previous in silico studies demonstrated that exchanging hydrogen by fluorine at distinct positions in the fentanyl molecule decreases its pKa value[5]

  • In contrast to single starting structures used previously[5], ensembles of structures derived from molecular dynamics simulations were the basis for the calculations yielding an averaged pKa value of 6.01

Read more

Summary

Introduction

Opioid receptor agonists are the most powerful drugs to treat severe acute and cancer-related pain. In contrast to previous pharmacokinetic concepts (reviewed in3), we recently developed a new pharmacodynamics-based design for peripherally-acting opioids lacking central or intestinal side effects[5]. This strategy is based on computational simulations of pathological receptor conformations and the finding that the protonation state of a ligand is crucial for its activity at opioid receptors. We hypothesized that the ligand’s pKa should be reduced to values close to the acidic pH of injured tissue This was achieved by fluorination of the piperidine ring in the μ-opioid receptor (MOR) agonist fentanyl, leading to the compound (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP). The compound (±)-N-[1-(2-fluoro-2-phenylethyl)piperidine-4-yl]-N-phenyl propionamide (FF3) was synthesized by a contractor (ASCA GmbH Berlin) and tested in vitro and in vivo in the present study

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.