Abstract

Central administration of general and selective opioid receptor subtype antagonists in the rat has revealed a substantial role for mu, a moderate role for kappa, and a minimal role for delta receptors in the mediation of deprivation-induced feeding. Antisense probes directed against the kappa opioid receptor (KOP), nociceptin opioid receptor (NOP), and delta opioid receptor (DOP) genes in rats result in reductions similar to kappa and delta antagonists, whereas antisense probes directed against the mu opioid receptor (MOP) gene produced modest reductions relative to mu antagonists, suggesting that isoforms of the MOP gene may mediate deprivation-induced feeding. Since these isoforms were initially identified in mice, the present study compared the effects of general and selective opioid receptor antagonists on deprivation-induced feeding in rats and mice and antisense probes directed against exons of the MOP, DOP, KOP, and NOP genes on deprivation-induced feeding in the mouse. Food-deprived (12 and 24 h) rats and mice displayed similar profiles of reductions in deprivation-induced feeding following general, mu, and kappa opioid antagonists. In contrast, mice, but not rats, displayed reductions in deprivation-induced intake following delta antagonism as well as DOP antisense probes, suggesting a species-specific role for the delta receptor. Antisense probes directed against the KOP and NOP genes also reduced deprivation-induced intake in mice in a manner similar to kappa antagonism. However, the significant reductions in deprivation-induced feeding following antisense probes directed against either exons 2, 4, 7, 8, or 13 of the MOP gene were modest compared with mu antagonism, suggesting a role for multiple mu-mediated mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call