Abstract

Expression of the opioid peptides dynorphin and enkephalin is altered within the first 24 h after acutely induced seizures in certain experimental models of epilepsy. Using in situ hybridization, we examined the expression of prodynorphin and preproenkephalin messenger RNA acutely following induction of kindling with recurrent seizures and in two models of chronic temporal lobe epilepsy: (i) rats fully kindled with rapidly recurring hippocampal seizures; and (ii) rats surviving after self-sustaining limbic status epilepticus induced with focal electrical stimulation of the hippocampus. In naive animals, a ventral-dorsal gradient was identified in the expression of both prodynorphin and preproenkephalin messenger RNA in the dentate gyrus and expression of prodynorphin message was demonstrated for the first time in the ventral portion of cornu Ammonis regio superior. After stimulation producing rapidly recurring hippocampal seizures, acute decreases in prodynorphin messenger RNA were seen in the dentate gyrus and cornu Ammonis regio superior at 24 h after the last seizure. In contrast, increases in preproenkephalin messenger RNA expression were seen acutely in the dentate gyrus, with a decrease seen in the entorhinal cortex. The change in prodynorphin message expression in cornu Ammonis regio superior persisted in kindled animals that were studied after one month seizure-free period. There were no changes in preproenkephalin message in kindled animals studied after the one month seizure-free interval. No statistically significant changes were found for either prodynorphin or preproenkephalin message in the post-self-sustaining limbic status epilepticus group at one month following induced seizures. Acute changes in peptide expression may contribute to increased excitation in the dentate gyrus during induction of kindling, while the chronic change identified in cornu Ammonis regio superior may contribute directly to persistently increased excitability in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.