Abstract
Belief and opinion evolution in social networks (SNs) can aid in understanding how people influence others’ decisions through social relationships. As a large number of users are involved in SNs, the complexity of traditional optimization techniques is high as they deal with the interactions between users separately. Moreover, the state variable (opinion) is high-dimensional because a person usually has opinions about many different social issues. Incorporating classical opinion dynamics, we formulate the opinion evolution in SNs as a high-dimensional stochastic mean field game (MFG). Numerical methods for high-dimensional MFGs are practically non-existent because of the need for grid-based spatial discretization. Thus, we propose a machine-learning method to tractably solve high-dimensional stochastic MFGs. With this approach, solving MFGs can be regarded as a special case of training a generative adversarial network. In the simulation, we analyze the effect of random social issues and stubbornness on the opinion evolution. Moreover, with the Social Evolution data set, we show that the proposed algorithm can efficiently predict the diffusion of opinions in SNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.