Abstract

Most of the opinion comments on social networks are short and ambiguous. In general, opinion classification on the comments is difficult because of lacking dominant features. A feature extraction technique is therefore necessary for improving accuracy of the classification and computational time. This paper proposes an effective feature selection method for opinion classification on a social network. The proposed method selects features based on the concept of a filter model, together with association rules. Support and confidence are used to calculate the weights of features. The features with high weight are selected for classification. Unlike supports in association rules, supports in our method are normalized to 0-1 to remove outlier supports. Moreover, a tuning parameter is used to emphasize the degree of support or confidence. The experimental results show that the proposed method provides high classification efficiency. The proposed method outperforms Information Gain, Chi-Square, and Gini Index in both computational time and accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.