Abstract

We have carried out a systematic analysis of the contribution of a set of selected features that include three new features to the accuracy of operon prediction. Our analyses have led to a number of new insights about operon prediction, including that (i) different features have different levels of discerning power when used on adjacent gene pairs with different ranges of intergenic distance, (ii) certain features are universally useful for operon prediction while others are more genome-specific and (iii) the prediction reliability of operons is dependent on intergenic distances. Based on these new insights, our newly developed operon-prediction program achieves more accurate operon prediction than the previous ones, and it uses features that are most readily available from genomic sequences. Our prediction results indicate that our (non-linear) decision tree-based classifier can predict operons in a prokaryotic genome very accurately when a substantial number of operons in the genome are already known. For example, the prediction accuracy of our program can reach 90.2 and 93.7% on Bacillus subtilis and Escherichia coli genomes, respectively. When no such information is available, our (linear) logistic function-based classifier can reach the prediction accuracy at 84.6 and 83.3% for E.coli and B.subtilis, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.