Abstract

Water snails developed a distinct appendage, the operculum, to better protect the body against predators. When the animal is active and crawling, part of the underside of the shell rests on the outer surface of the operculum. We observed the water snails (Pomacea canaliculata) spend ~3 hours per day foraging, and the relative angular velocity between the shell and operculum can reach up to 10 °·s−1, which might inevitably lead to abrasion on the shell and operculum interface. However, by electron microscopy images, we found that the underside of the shell and outer surface of the operculum is not severely worn, which indicates that this animal might have a strategy to reduce wear. We discovered the superimposed rings distributed concentrically on the surface, which can generate micro-grooves for a hydrodynamic lubrication. We theoretically and experimentally revealed the mechanism of drag reduction combing the groove geometry and hydrodynamics. This textured operculum surface might provide a friction coefficient up to 0.012 as a stability-resilience, which protects the structure of the snail’s shell and operculum. This mechanism might open up new paths for studies of micro-anti-wear structures used in liquid media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call