Abstract

We solve various master equations to obtain density operators' infinite operator-sum representation via a new approach, i.e., by virtue of the thermo-entangled state representation that has a fictitious mode as a counterpart mode of the system mode. The corresponding Kraus operators from the point of view of quantum channel are derived, whose normalization conditions are proved. Miscellaneous characters possessed by different quantum channels, such as decoherence, phase diffusion, damping, and amplification, can be shown explicitly in the entangled state representation of the density operators. Squeezing transformation is applied to the density operator for decoherence to generate a master equation for describing the phase sensitive process. Partial trace method for deriving new density operators is also introduced. Throughout our discussion, the technique of integration within an ordered product (IWOP) of operators is fully used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call