Abstract

An L-shaped arm driven by a linear pulse motor is considered in this paper, an operator-based robust nonlinear control approach is proposed to reduce the vibration of the arm. First, by separating the arm into two parts, its vibration dynamics is modelled based on Euler-Bernoulli beam theory. Second, by using operator-based robust right coprime factorization approach, two control schemes are designed, one for controlling the linear pulse motor move to the desired destination and reducing the vibration of the arm with optimal trajectory, another one is to control vibration of the arm by using a piezoelectric actuator, where a tracking compensator is designed to compensate the hysteresis of the piezoelectric actuator and make the arm vibration track to the reference values. Finally, simulation results are demonstrated to verify the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call